README.txt

(16 KB) Pobierz
                                  INTRODUCTION

This is wimlib version 1.6.0 (January 2014).  wimlib is a C library for
creating, modifying, extracting, and mounting files in the Windows Imaging
Format (WIM files).  These files are normally created using the ImageX
(imagex.exe) or Dism (Dism.exe) utilities on Windows, but wimlib is distributed
with a free implementation of ImageX called "wimlib-imagex" for both UNIX-like
systems and Windows.

                                  INSTALLATION

To install wimlib and wimlib-imagex on Windows you simply need to download and
extract the ZIP file containing the latest binaries from the SourceForge page
(http://sourceforge.net/projects/wimlib/), which you may have already done.

To install wimlib and wimlib-imagex on UNIX-like systems (with Linux being the
primary supported and tested platform), you must compile the source code, which
is also available at http://sourceforge.net/projects/wimlib/.  Alternatively,
check if a package has been prepared for your Linux distribution.  Example files
for Debian and RPM packaging are in the debian/ and rpm/ directories.

                                    WIM FILES

A Windows Imaging (WIM) file is an archive designed primarily for archiving
Windows filesystems.  However, it can be used on other platforms as well, with
some limitations.  Like some other archive formats such as ZIP, files in WIM
archives may be compressed.  WIM files support multiple compression formats,
including LZX, XPRESS, and LZMS.  All these formats are supported by wimlib.

A WIM file consists of one or more "images".  Each image is an independent
top-level directory structure and is logically separate from all other images in
the WIM.  Each image has a name as well as a 1-based index in the WIM file.  To
save space, WIM archives automatically combine all duplicate files across all
images.

A WIM file may be either stand-alone or split into multiple parts.  Split WIMs
are read-only and cannot be modified.

                             IMAGEX IMPLEMENTATION

wimlib itself is a C library, and it provides a documented public API (See:
http://wimlib.sourceforge.net) for other programs to use.  However, it is also
distributed with a command-line program called "wimlib-imagex" that uses this
library to implement an imaging tool similar to Microsoft's ImageX.
wimlib-imagex supports almost all the capabilities of Microsoft's ImageX as well
as additional capabilities.  wimlib-imagex works on both UNIX-like systems and
Windows, although some features differ between the platforms.

Run `wimlib-imagex' with no arguments to see an overview of the available
commands and their syntax.  For additional documentation:

  * If you have installed wimlib-imagex on a UNIX-like system, you will find
    further documentation in the man pages; run `man wimlib-imagex' to get
    started.

  * If you have downloaded the Windows binary distribution, you will find the
    documentation for wimlib-imagex in PDF format in the "doc" directory,
    ready for viewing with any PDF viewer.  Please note that although the PDF
    files are converted from UNIX-style "man pages", they do document
    Windows-specific behavior when appropriate.

                                COMPRESSION RATIO

wimlib (and wimlib-imagex) can create XPRESS, LZX, or LZMS compressed WIM
archives.  The following tables compare the compression ratio and performance
for creating a compressed x86_64 Windows PE image with XPRESS and LZX.  Note:
these timings were done on Windows so that the times would be fully comparable;
however, wimlib may have even better performance on other operating systems such
as Linux.  Timings were done with 2 CPUs available, both of which automatically
are used by wimlib for both XPRESS and LZX, and also by imagex.exe but
apparently only for LZX.

        Table 1. WIM size

                                           XPRESS Compression      LZX Compression
        wimlib-imagex (v1.5.3):            207,444,390 bytes       188,106,091 bytes
        Microsoft imagex.exe (Windows 7):  209,960,209 bytes       188,224,481 bytes

        Table 2. Time to create WIM

                                           XPRESS Compression      LZX Compression
        wimlib-imagex (v1.5.3):            73 sec                  202 sec
        Microsoft imagex.exe (Windows 7):  90 sec                  149 sec

The above LZX data are using explicitly specified maximum compression
('--compress=maximum') as of wimlib v1.5.3.  If `wimlib-imagex capture' or
`wimlib-imagex capture' is instead run with no '--compress' argument, then a
faster LZX compressor is used; it will produce results in between those given
for XPRESS and LZX above.

Note: if the absolute maximum but still compatible (i.e. not changing the
compression chunk size) LZX compression ratio is desired, `wimlib-imagex
optimize WIMFILE --recompress --compress-slow' on one of the above
LZX-compressed WIMs produces a WIM of 187,089,943 bytes in about 400 seconds.

                                  NTFS SUPPORT

WIM images may contain data, such as alternate data streams and
compression/encryption flags, that are best represented on the NTFS filesystem
used on Windows.  Also, WIM images may contain security descriptors which are
specific to Windows and cannot be represented on other operating systems.
wimlib handles this NTFS-specific or Windows-specific data in a
platform-dependent way:

  * In the Windows version of wimlib and wimlib-imagex, NTFS-specific and
    Windows-specific data are supported natively.

  * In the UNIX version of wimlib and wimlib-imagex, NTFS-specific and
    Windows-specific data are ordinarily ignored; however, there is also special
    support for capturing and extracting images directly to/from unmounted NTFS
    volumes.  This was made possible with the help of libntfs-3g from the
    NTFS-3g project.

For both platforms the code for NTFS capture and extraction is complete enough
that it is possible to apply an image from the "install.wim" contained in recent
Windows installation media (Vista, Windows 7, or Windows 8) directly to a NTFS
filesystem, and then boot Windows from it after preparing the Boot Configuration
Data.  In addition, a Windows installation can be captured (or backed up) into a
WIM file, and then re-applied later.

                                   WINDOWS PE

A major use for wimlib and wimlib-imagex is to create customized images of
Windows PE, the Windows Preinstallation Environment, on either UNIX-like systems
or Windows without having to rely on Microsoft's software and its restrictions
and limitations.

Windows PE is a lightweight version of Windows that can run entirely from memory
and can be used to install Windows from local media or a network drive or
perform maintenance.  It is the operating system that runs when you boot from
the Windows installation media.

You can find Windows PE on the installation DVD for Windows Vista, Windows 7, or
Windows 8, in the file `sources/boot.wim'.  Windows PE can also be found in the
Windows Automated Installation Kit (WAIK), which is free to download from
Microsoft, inside the `WinPE.cab' file, which you can extract natively on
Windows, or on UNIX-like systems if you install either the `cabextract' or
`p7zip' programs.

In addition, Windows installations and recovery partitions frequently contain a
WIM containing an image of the Windows Recovery Environment, which is similar to
Windows PE.

A shell script `mkwinpeimg' is distributed with wimlib on UNIX-like systems to
ease the process of creating and customizing a bootable Windows PE image.

                                  DEPENDENCIES

This section documents the dependencies of wimlib and the programs distributed
with it, when building for a UNIX-like system from source.  If you have
downloaded the Windows binary distribution of wimlib and wimlib-imagex then all
dependencies were already included and this section is irrelevant.

* libxml2 (required)
	This is a commonly used free library to read and write XML files.  You
	likely already have it installed as a dependency for some other program.
	For more information see http://xmlsoft.org/.

* libfuse (optional but highly recommended)
	Unless configured with --without-fuse, wimlib requires a non-ancient
	version of libfuse to be installed.  Most Linux distributions already
	include this, but make sure you have the libfuse package installed, and
	also libfuse-dev if your distribution distributes header files
	separately.  FUSE also requires a kernel module.  If the kernel module
	is available it will automatically be loaded if you try to mount a WIM
	file.  For more information see http://fuse.sourceforge.net/.  FUSE is
	also available for FreeBSD.

* libntfs-3g (optional but highly recommended)
	Unless configured with --without-ntfs-3g, wimlib requires the library
	and headers for libntfs-3g version 2011-4-12 or later to be installed.
	Versions dated 2010-3-6 and earlier do not work because they are missing
	the header xattrs.h (and the file xattrs.c, which contains functions we
	need).  libntfs-3g version 2013-1-13 is compatible only with wimlib
	1.2.4 and later.

* OpenSSL / libcrypto (optional)
	wimlib can use the SHA1 message digest code from OpenSSL instead of
	compiling in yet another SHA1 implementation. (See LICENSE section.)

* cdrkit (optional)
* mtools (optional)
* syslinux (optional)
* cabextract (optional)
	The `mkwinpeimg' shell script will look for several other programs
	depending on what options are given to it.  Depending on your Linux
	distribution, you may already have these programs installed, or they may
	be i...
Zgłoś jeśli naruszono regulamin